Clustering Considerations for Machine Learning
With examples from exploration data

Philip Lesslar

Digital Energy Journal Forum 2019
3rd October 2019
ADAX Center, Bangsar South
Kuala Lumpur, Malaysia
Key messages

• Focus is only on clustering

• Understand internals to maximise ML effectiveness

• Classification is a big field

• Data analysis is not for the faint-hearted

• Usage with some example exploration data
Classification:
Creating meaningful groups out of a collection of objects

Build the Model:
Feature extraction to enable effective identification of new objects

Identification:
Use the model to identify new objects to one of the groups

Unsupervised learning

Training (Model building)

Testing

Supervised learning
The Machine Learning Workflow

https://towardsdatascience.com
Multivariate methods for classification and dimensionality reduction

• Cluster analysis
 • Finding “natural” or pre-determined groups in datasets

• Principal components analysis
 • Reducing the dimensionality of a data set by finding a smaller set of variables that still represents it

• Factor analysis
 • For data sets where a large number of observed variables are thought to reflect a smaller number of unobserved/latent variables.

• Multi dimensional scaling
 • Technique for visualising the level of similarity of samples transformed onto a 2D plane

• Linear & Multiple Regression
 • One or more independent variables are used to predict the value of a dependent variable

Some approaches to Clustering

• K-Means
 • Iterative computing of distances between points and group means. Requires specification of number of groups.

• Mean Shift Clustering
 • Sliding iterative method to find point groups of higher mean density.

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 • Similar to Mean Shift but will identify noise and outliers.

• Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM)
 • Uses Gaussian approach to define clusters and uses both mean and std deviation unlike K-Means which only uses means. Detects elliptical clusters

• Agglomerative Hierarchical Clustering
 • Progressive pairwise clustering until all are merge into one tree in a dendrogram. Not too sensitive to choice of coefficient.

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
Cluster Analysis – Separating variables in n-dimensions

Visualization

2 dimensions

3 dimensions

4, 5,, n dimensions?

Cluster analysis requires:
1. Measure of pairwise proximities between points
2. Grouping method
Proximity measures

Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>a</td>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>j</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proximity measures

Measures of Similarity / Dissimilarity (Distance)

Matching coefficient

\[S_{ij} = \frac{(a + d)}{(a + b + c + d)} \]

Jaccard coefficient (1908)

\[S_{ij} = \frac{a}{(a + b + c)} \]

Rogers & Tanimoto (1960)

\[S_{ij} = \frac{(a + d)}{[a + 2(b + c) + d]} \]

Sneath & Sokal (1973)

\[S_{ij} = \frac{a}{[a + 2(b + c)]} \]

Gower & Legendre (1986)

\[S_{ij} = \frac{(a + d)}{[a + \frac{1}{2}(b + c) + d]} \]

Euclidean Distance

Distance between vectors \(x \) & \(y \)

\[d(x, y) = \sqrt{\sum_{i} (x_i - y_i)^2} \]

Canberra Distance

Distance between vectors \(u \) & \(v \)

\[d(u, v) = \sum_{i} \frac{|u_i - v_i|}{|u_i| + |v_i|} \]

Proximity measures - Euclidean Distance – Pythagoras’s Theorem

In a right angled triangle, the length of the hypothenuse is equal to the square root of the sum of squares of the other 2 sides

\[C = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

The Euclidean Distance \[d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = C, \quad n = 2 \]
Examples from Exploration data

1. Prospect Appraisal – Expectation values
2. Well logs – Curve values
3. Micropaleontology – Foraminiferal assemblages
Exploration Prospect Appraisal

DATA
Seismic interpretation
Geological picks & zones
Paleontology (incl. palyn, nanno etc)
Lithology & Lithofacies
Environments of deposition
Temperature
etc

Prospect Appraisal System

Expectations
- POS
- MSV
- HSV
- REC
- STOIIP
- GIIP

Cutoffs
- 0 mbbls
- 30 mbbls
- 0 bcf/tcf

Probabilistic
- Bootstrap
- Monte Carlo

Copyright©2019 Precision-DM
Exploration Prospect Appraisal – The DATA

<table>
<thead>
<tr>
<th>POS</th>
<th>MSV</th>
<th>HSV</th>
<th>Expectation</th>
<th>STOIIP</th>
<th>OIL (0 mmbbls cutoff)</th>
<th>POS</th>
<th>MSV</th>
<th>HSV</th>
<th>Expectation</th>
<th>STOIIP</th>
<th>GAS (0 bscf cutoff)</th>
<th>POS</th>
<th>MSV</th>
<th>HSV</th>
<th>Expectation</th>
<th>STOIIP</th>
<th>(values/POS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>24</td>
<td>1</td>
<td>21</td>
<td>0</td>
<td>96</td>
<td>79</td>
<td>133</td>
<td>76</td>
<td>122</td>
<td>30</td>
<td>127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>11</td>
<td>26</td>
<td>7</td>
<td>23</td>
<td>10</td>
<td>38</td>
<td>60</td>
<td>64</td>
<td>25</td>
<td>57</td>
<td>16</td>
<td>27</td>
<td>36</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>11</td>
<td>23</td>
<td>8</td>
<td>31</td>
<td>15</td>
<td>29</td>
<td>38</td>
<td>80</td>
<td>41</td>
<td>90</td>
<td>33</td>
<td>55</td>
<td>46</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>85</td>
<td>15</td>
<td>32</td>
<td>13</td>
<td>25</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>7</td>
<td>16</td>
<td>5</td>
<td>22</td>
<td>6</td>
<td>29</td>
<td>40</td>
<td>80</td>
<td>27</td>
<td>64</td>
<td>22</td>
<td>36</td>
<td>31</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>87</td>
<td>13</td>
<td>30</td>
<td>11</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>29</td>
<td>49</td>
<td>29</td>
<td>49</td>
<td>14</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>11</td>
<td>22</td>
<td>9</td>
<td>43</td>
<td>18</td>
<td>28</td>
<td>36</td>
<td>90</td>
<td>55</td>
<td>114</td>
<td>50</td>
<td>82</td>
<td>53</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>8</td>
<td>19</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>29</td>
<td>36</td>
<td>29</td>
<td>35</td>
<td>75</td>
<td>10</td>
<td>16</td>
<td>38</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>72</td>
<td>34</td>
<td>59</td>
<td>24</td>
<td>34</td>
<td>18</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>92</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>22</td>
<td>41</td>
<td>18</td>
<td>73</td>
<td>40</td>
<td>36</td>
<td>52</td>
<td>95</td>
<td>113</td>
<td>219</td>
<td>107</td>
<td>184</td>
<td>86</td>
<td>194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>18</td>
<td>33</td>
<td>14</td>
<td>29</td>
<td>10</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>18</td>
<td>33</td>
<td>14</td>
<td>29</td>
<td>10</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>18</td>
<td>37</td>
<td>16</td>
<td>76</td>
<td>29</td>
<td>37</td>
<td>56</td>
<td>99</td>
<td>53</td>
<td>109</td>
<td>52</td>
<td>88</td>
<td>84</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>20</td>
<td>48</td>
<td>17</td>
<td>81</td>
<td>29</td>
<td>47</td>
<td>75</td>
<td>94</td>
<td>57</td>
<td>135</td>
<td>54</td>
<td>92</td>
<td>96</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>11</td>
<td>21</td>
<td>9</td>
<td>37</td>
<td>12</td>
<td>26</td>
<td>31</td>
<td>83</td>
<td>61</td>
<td>110</td>
<td>51</td>
<td>91</td>
<td>46</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>11</td>
<td>21</td>
<td>9</td>
<td>37</td>
<td>12</td>
<td>26</td>
<td>31</td>
<td>83</td>
<td>61</td>
<td>110</td>
<td>51</td>
<td>91</td>
<td>46</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>12</td>
<td>24</td>
<td>9</td>
<td>46</td>
<td>16</td>
<td>28</td>
<td>37</td>
<td>90</td>
<td>61</td>
<td>125</td>
<td>55</td>
<td>92</td>
<td>58</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>12</td>
<td>24</td>
<td>9</td>
<td>46</td>
<td>16</td>
<td>28</td>
<td>37</td>
<td>90</td>
<td>61</td>
<td>125</td>
<td>55</td>
<td>92</td>
<td>58</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>17</td>
<td>1</td>
<td>27</td>
<td>34</td>
<td>80</td>
<td>29</td>
<td>61</td>
<td>23</td>
<td>36</td>
<td>25</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The purpose: Exploring ‘natural’ groups of prospects may trigger ideas
Exploration Prospect Appraisal - Clustering

Clustering method: Ward
Coefficient: Squared Euclidean Distance

Clustering method: Centroid
Coefficient: Squared Euclidean Distance

Clustering method: Average Linkage
Coefficient: Squared Euclidean Distance

Clustering method: Complete Linkage
Coefficient: Squared Euclidean Distance

1. Not very distinct clusters
2. Review data to remove non-discriminatory data
3. Rerun and review

Cluster analysis using Spyder / Anaconda
Scipy.cluster.hierarchy.dendrogram
Well Curves - The DATA

Depth, SGRC, SGRA, SGRB, SEXP, SEP, SEMP, SEDP, SEXC, SESC, SEMC, SEDC, STEM, SDDE, SPLF, SNA, SNFA, SBD, SCOR, SBD2, SCO2, SNEB, SFBD, SNPE, SHSI (ft), (api), (api), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (deqf), (ptpf), (in), (c), (g/cc), (in)

<table>
<thead>
<tr>
<th>Depth</th>
<th>SGRC</th>
<th>SGRA</th>
<th>SGRB</th>
<th>SEXP</th>
<th>SEP</th>
<th>SEMP</th>
<th>SEDP</th>
<th>SEXC</th>
<th>SESC</th>
<th>SEMC</th>
<th>SEDC</th>
<th>STEM</th>
<th>SDDE</th>
<th>SPLF</th>
<th>SNA</th>
<th>SNFA</th>
<th>SBD</th>
<th>SCOR</th>
<th>SBD2</th>
<th>SCO2</th>
<th>SNEB</th>
<th>SFBD</th>
<th>SNPE</th>
<th>SHSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ft]</td>
<td>[api]</td>
<td>[api]</td>
<td>[api]</td>
<td>[ohmm]</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10291</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>120.34</td>
<td>975.0</td>
<td>0.09</td>
<td>0.09</td>
<td>36.32</td>
<td>194.42</td>
<td>142.46</td>
<td>-999.25</td>
<td>0.5</td>
<td>2440</td>
<td>475</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
</tr>
<tr>
<td>10292</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>105.39</td>
<td>981.11</td>
<td>0.09</td>
<td>0.09</td>
<td>34.45</td>
<td>193.68</td>
<td>136.26</td>
<td>-999.25</td>
<td>0.5</td>
<td>2445</td>
<td>475</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>10292.5</td>
</tr>
<tr>
<td>10293</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>52.02</td>
<td>952.05</td>
<td>0.09</td>
<td>0.09</td>
<td>28.88</td>
<td>188.31</td>
<td>142.95</td>
<td>-999.25</td>
<td>0.49</td>
<td>2467</td>
<td>472</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>10293.5</td>
</tr>
<tr>
<td>10294</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>64.08</td>
<td>1005.84</td>
<td>0.09</td>
<td>0.09</td>
<td>17.79</td>
<td>190.26</td>
<td>144.8</td>
<td>-999.25</td>
<td>0.49</td>
<td>2475</td>
<td>482</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>10294.5</td>
</tr>
<tr>
<td>10295</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>125.01</td>
<td>886.83</td>
<td>0.09</td>
<td>0.09</td>
<td>13.62</td>
<td>192.59</td>
<td>159.28</td>
<td>5.66</td>
<td>0.48</td>
<td>2471</td>
<td>487</td>
<td>2.24</td>
<td>-0.29</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>2.52</td>
<td>-999.25</td>
<td>8.5</td>
</tr>
<tr>
<td>10296</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>214.79</td>
<td>848.52</td>
<td>0.09</td>
<td>0.09</td>
<td>10.03</td>
<td>194.46</td>
<td>145.93</td>
<td>32.03</td>
<td>0.48</td>
<td>2466</td>
<td>490</td>
<td>2.23</td>
<td>-0.29</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>2.52</td>
<td>-999.25</td>
<td>8.5</td>
</tr>
<tr>
<td>10297</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>382.27</td>
<td>976.65</td>
<td>0.09</td>
<td>0.09</td>
<td>5.39</td>
<td>266.43</td>
<td>51.08</td>
<td>0.48</td>
<td>2491</td>
<td>491</td>
<td>2.23</td>
<td>-0.29</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>2.52</td>
<td>-999.25</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>10298</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>0.06</td>
<td>0.06</td>
<td>46.32</td>
<td>1565.17</td>
<td>0.09</td>
<td>0.09</td>
<td>0.29</td>
<td>2440</td>
<td>507.64</td>
<td>26.48</td>
<td>0.47</td>
<td>2467</td>
<td>497</td>
<td>2.23</td>
<td>-0.29</td>
<td>-999.25</td>
<td>-999.25</td>
<td>-999.25</td>
<td>2.52</td>
<td>-999.25</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Copyright © 2019 Precision-DM
Well Curves – Clustering

1. Some distinct clusters, majority of points are mixed
2. Review data to remove non-discriminatory data
3. Investigate end points. Rerun and review

Clustering method: Ward
Coefficient: Squared Euclidean Distance

Clustering method: Centroid
Coefficient: Squared Euclidean Distance

Clustering method: Average Linkage
Coefficient: Squared Euclidean Distance

Clustering method: Complete Linkage
Coefficient: Squared Euclidean Distance

Cluster analysis using Spyder / Anaconda
Scipy.cluster.hierarchy.dendrogram
Well Curves – Change of coefficient

Cluster analysis using Spyder / Anaconda
.Scipy.cluster.hierarchy.dendrogram

1. More distinct clusters, easier to differentiate
2. Investigate groups for significance
3. Review data for noise
Micropaleontology

Benthonic Foraminifera – Protozoa. Live(d) on the sea bottom. Size ~ 200-2000 microns
Best viewed with binocular microscope at 25x – 80x magnification

North West Borneo
Environmental Scheme
(Shell, 1970s)

Holomarine Inner Neritic
0 – 40m water depth

Holomarine Middle Neritic
40 – 100m water depth

Holomarine Middle Neritic
100 – 200m water depth

Fluviomarine realm
The purpose: Group samples belonging to the same environment of deposition based on species content
Micropaleontology – Well foraminiferal samples

Cluster analysis using Spyder / Anaconda
Scipy.cluster.hierarchy.dendrogram

1. Some distinct clusters, mostly mixed
2. Investigate groups for significance
3. Review data for noise
Data Science opportunities – Paleoenvironmental reconstruction

Stratigraphy
- Litho, bio, chrono
- Sea level changes
- Flooding surfaces

Structural
- Faults
- Uplifts
- Eustatic
- Erosion
- Uplifts
- Missing sections

Sedimentary facies
- Types
- Characteristics
- Bedding, dips etc
- Log shape interpretation

Seismic
- Seismic features (seismostrat)
- Traces
- Checkshots
- Time-depth curve
- Vertical seismic profiling (VSP)

Well Logs
- Gamma ray
- Sonic
- Density
- Neutron
- Resistivities
- Caliper

Minerals
- Glauculite
- Siderite
- Pyrite
- Mica

Paleontology
- Benthics
- Planktonics
- Larger forams
- Nannofossils
- Palynology
- Ostracods
- Trace fossils
Data Science opportunities—Source Rocks

Pressure
- Spot readings
- Trends

Temperature
- Sample readings
- Gradients

Surrounding wells
- Well data
- Source rock distribution patterns
- Maps & trends

Burial History
- Sedimentation rates
- Sediment types
- Missing sections
- Palinspastic reconstruction

Well Logs
- Gamma ray
- Sonic
- Density
- Resistivities
- Caliper

Sedimentary facies
- Types
- Characteristics
- Bedding, dips etc
- Log shape interpretation

Rock properties
- Porosity
- Permeability
- Diagenesis

Macerals
- Organic type (Lip. vs Vit.)
- Kitchen area
- Migration paths
- Maturity levels (DOM, VR/E)

Computer simulation
- Methods (eg Migration Models)
- Probabilistic vs deterministic

Paleontology
- Benthics
- Planktonics
- Larger forams
- Nannofossils
- Palynology
- Ostracods

Copyright © 2019 Precision-DM
Data Science opportunities – Prospect appraisal

Temperature
- Sample readings
- Gradients

Pressure
- Spot readings
- Trends

Surrounding wells
- Well data
- Correlation
- Maps & trends

Rock properties
- Porosity
- Permeability
- Diagenesis

Analogues
- Local comparators
- Regional
- Global

Sedimentary facies
- Sediment types
- Characteristics
- Bedding, dips etc
- Log shape interpretation

Structural
- Faults
- Closures
- Seals

Burial History
- Sedimentation rates
- Sediment types
- Missing sections
- Palinspastic reconstruction

Well Logs
- Gamma ray
- Sonic
- Density
- Neutron
- Resistivities
- Caliper

Computer simulation
- Methods (eg Monte Carlo)
- Probabilistic vs deterministic

Paleontology
- Benthics
- Planktonics
- Larger forams
- Nannofossils
- Palynology
- Ostracods

Source Rocks
- Type (lip. vs vit.)
- Kitchen area
- Maturity

Copyright © 2019 Precision-DM
Conclusions

• Machine learning is not a black box

• Understand the ML workflow components, behaviors and limitations

• Look at the DATA

• Give importance to feature selection & feature extraction

• Look at the results

• Look at the DATA again
Questions