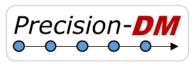
Clustering Considerations for Machine Learning With examples from exploration data

Philip Lesslar

Digital Energy Journal Forum 2019 3rd October 2019 ADAX Center, Bangsar South Kuala Lumpur, Malaysia

Key messages

- Focus is only on clustering
- Understand internals to maximise ML effectiveness
- Classification is a big field
- Data analysis is not for the faint-hearted
- Usage with some example exploration data



Machine Learning

Classification:

Creating meaningful groups out of a collection of objects

Build the Model:

Feature extraction to enable effective identification of new objects

Identification:

Use the model to identify new objects to one of the groups

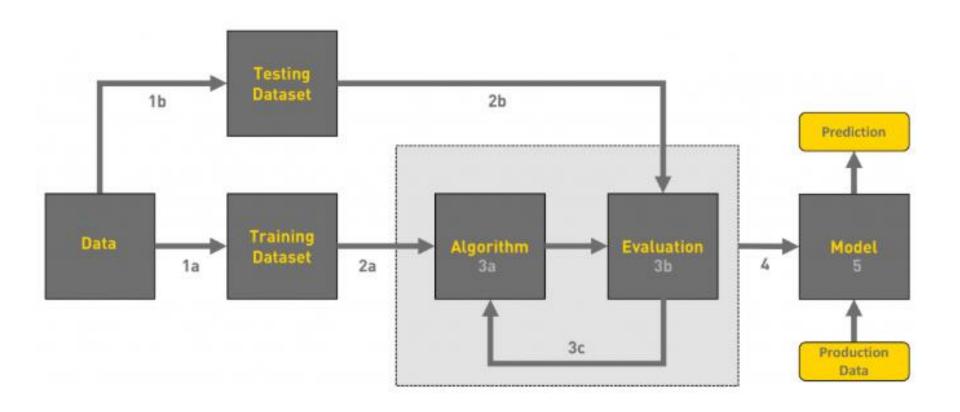
Unsupervised learning

Training (Model building)

Testing

Supervised learning

The Machine Learning Workflow



https://towardsdatascience.com

Multivariate methods for classification and dimensionality reduction

Cluster analysis

Finding "natural" or pre-determined groups in datasets

Principal components analysis

 Reducing the dimensionality of a data set by finding a smaller set of variables that still represents it

Factor analysis

• For data sets where a large number of observed variables are thought to reflect a smaller number of unobserved/latent variables.

Multi dimensional scaling

 Technique for visualising the level of similarity of samples transformed onto a 2D plane

Linear & Multiple Regression

 One or more independent variables are used to predict the value of a dependent variable

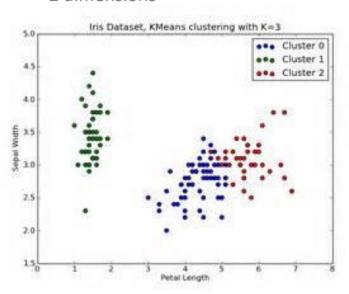
Some approaches to Clustering

- K-Means
 - Iterative computing of distances between points and group means. Requires specification of number of groups.
- Mean Shift Clustering
 - Sliding iterative method to find point groups of higher mean density.
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 - Similar to Mean Shift but will identify noise and outliers.
- Expectation–Maximization (EM) Clustering using Gaussian Mixture Models (GMM)
 - Uses Gaussian approach to define clusters and uses both mean and std deviation unlike K-Means which only uses means. Detects elliptical clusters
- Agglomerative Hierarchical Clustering
 - Progressive pairwise clustering until all are merge into one tree in a dendrogram. Not too sensitive to choice of coefficient.

Cluster Analysis – Separating variables in n-dimensions

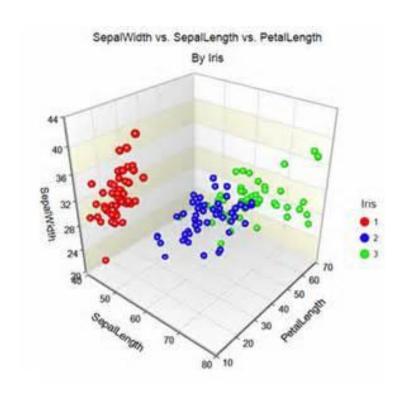
Visualization

2 dimensions



4, 5,, n dimensions?

3 dimensions



Cluster analysis requires:

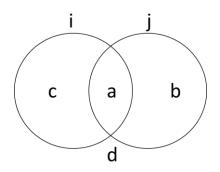
- .. Measure of pairwise proximities between points
- 2. Grouping method

Proximity measures

Data

Measures of Similarity / Dissimilarity (Distance)

Binary (presence/absence)



Matching coefficient
Jaccard coefficient (1908)
Rogers & Tanimoto (1960)
Sneath & Sokal (1973)
Gower & Legendre (1986)

$$S_{ij} = (a + d) / (a + b + c + d)$$

 $S_{ij} = a / (a + b + c)$
 $S_{ij} = (a + d) / [a + 2(b + c) + d]$
 $S_{ij} = a / [a + 2(b + c)]$
 $S_{ij} = (a + d) / [a + ½(b + c) + d]$
 $S_{ij} = a / [a + ½(b + c)]$

Continuous

Euclidean Distance

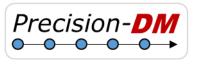
Distance between vectors x & y

$$d(x,y) = \sqrt{\sum_{i}^{n} (x_{i} - y_{i})^{2}}$$

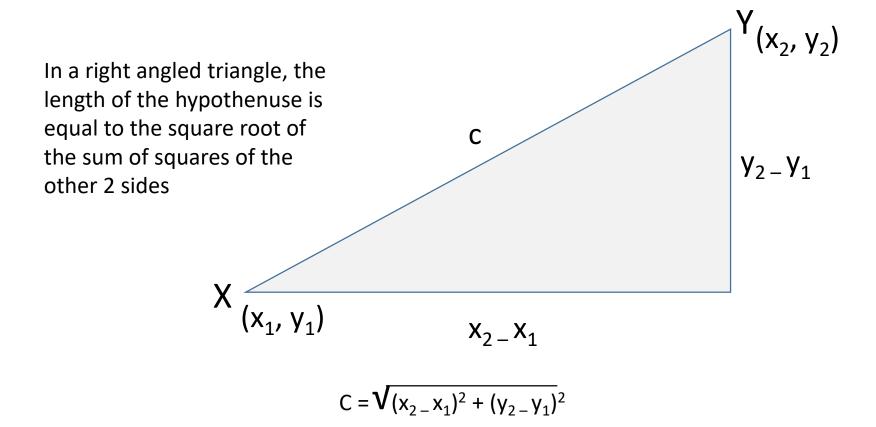
Canberra Distance

Distance between vectors u & v

$$d(u,v) = \sum_i rac{|u_i-v_i|}{|u_i|+|v_i|}$$



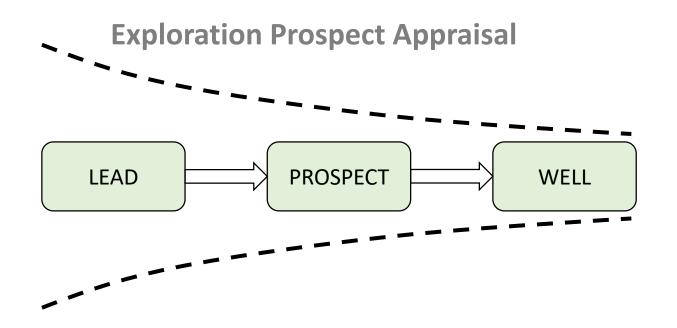
Proximity measures - Euclidean Distance - Pythagoras's Theorem



The Euclidean Distance $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = C$, n = 2

Examples from Exploration data

- 1. Prospect Appraisal Expectation values
- 2. Well logs Curve values
- 3. Micropaleontology Foraminiferal assemblages



DATA

Seismic interpretation Geological picks & zones Paleontology (incl. palyn, nanno etc) Lithology & Lithofacies **Environments of deposition Temperature** etc

Probabilistic

- Bootstrap
- Monte Carlo

Expectations

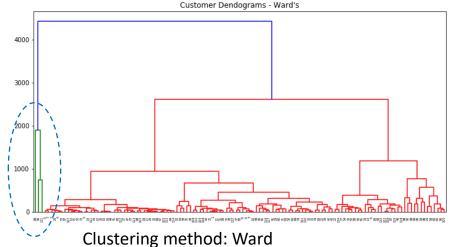
POS	<u>Cutoffs</u>
MSV	0 mbbls
HSV	30 mbbls
REC	0 bcf/tcf
STOIIP	o bei/tei
GIIP	

Exploration Prospect Appraisal – The DATA

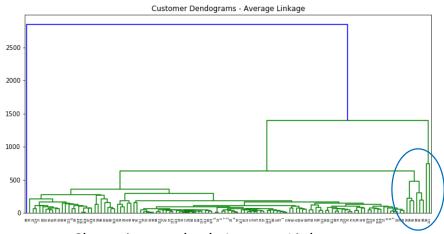
OIL (0 mmbbls cutoff)					C	OIL (3	0 mmbbl cutoff)	s	GAS	(0 bscf	cutoff)		(values/POS)					
			Expe	ctation			,					Expectat	ion	MSV	MSV			
POS	MSV	HSV	REC.		P	os	MSV	HSV	POS	MSV	HSV	Rec.	GIIP	STOIIP	GIIP			
80	(5 1	0	5	24	1	21	0	96	79	133	76	122	30		127		
64	1	1 2	6	7	23	10	38	60	64	25	57	16	27	36		42		
68	1	1 2	3	8	31	15	29	38	80	41	90	33	55	46		69		
85		5	9	4	27	0	0	0	85	15	32	13	25	32		29		
72	-	7 1	6	5	22	6	29	40	80	27	64	22	36	31		45		
78	;	3	6	2	1	0	0	0	87	13	30	11	18	14		21		
80	4	1	8	3	1	0	0	0	99	29	49	29	49	14		49		
81	1	1 2	2	9	13	18	28	36	90	55	114	50	82	53		91		
26	8	3 1	9	2	0	4	29	36	29	35	75	10	16	38		55		
65	4	1	6	2	2	0	0	0	72	34	59	24	34	18		47		
80	2	2	2	1	5	0	0	0	92	6	12	6	9	6		10		
85	22	2 4	1 ′	8	73	40	36	52	95	113	219	107	184	86		194		
48	2	2	4	1	5	0	0	0	80	18	33	14	29	10		36		
48	2	2	4	1	5	0	0	0	80	18	33	14	29	10		36		
90	18	3	7 ′	6	76	29	37	56	99	53	109	52	88	84		89		
84	20) 4	8 ′	7	31	29	47	75	94	57	135	54	92	96		98		
81	1	1 2	1	9 :	37	12	26	31	83	61	110	51	91	46		110		
81	1	1 2	1	9 :	37	12	26	31	83	61	110	51	91	46		110		
80	12	2 2	4	9	16	16	28	37	90	61	125	55	92	58		102		
80	12	2 2	4	9	16	16	28	37	90	61	125	55	92	58		102		
67	(3 1	1	4	7	1	27	34	80	29	61	23	36	25		45		

The purpose: Exploring 'natural' groups of prospects may trigger ideas

Exploration Prospect Appraisal - Clustering

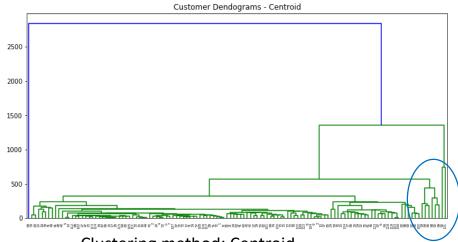


Coefficient: Squared Euclidean Distance



Clustering method: Average Linkage Coefficient: Squared Euclidean Distance

Cluster analysis using Spyder / Anaconda Scipy.cluster.hierarchy.dendrogram



Clustering method: Centroid

Coefficient: Squared Euclidean Distance



- **Not very distinct clusters**
- Review data to remove non-discriminatory data
- **Rerun and review**

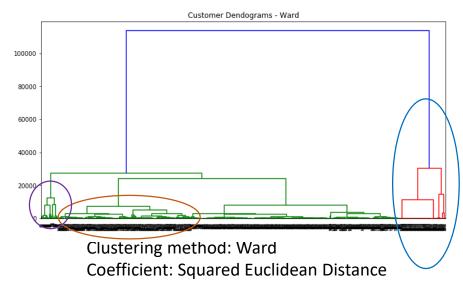
Well Curves – The DATA

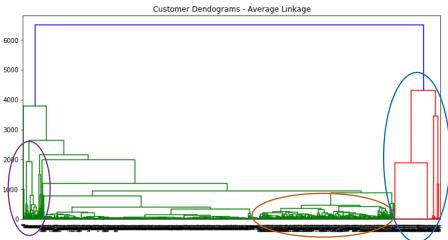
Depth	SGRC	SGRA	SGRB	SEXP	SESP	SEMP	SEDP	SEXC	SESC	SEMC	SEDC	SEDA	STEM	SDDE	SPLF	SNNA	SNFA	SBDC	SCOR	SBD2	SCO2	SNBD	SFBD	SNPE	SHSI
(ft)	(api)	(api)	(api)	(ohmm)	(ohmm)	(ohmm)	(ohmm)	(ohmm)	(ohmm)	(ohmm)	(ohmm)	(ohmm)	(degF)	(ptpf)	(v/v)	(cp30)	(cp30)	(g/cc)	(g/cc)	(g/cc)	(g/cc)	(g/cc)	(g/cc)	(b/e)	(in)
1	4	5	6	7	8	9	10	11	. 12	13	14	15	16	17	1	8 1	9 2	0 21	1 22	23	24	25	26	27	28
10291	-999.25	-999.25	-999.25	0.06	0.06	120.34	975	0.09	0.09	36.32	194.42	194.42	142.46	-999.25	0.	5 244	47	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10291.5	-999.25	-999.25	-999.25	0.06	0.06	105.39	981.11	0.09	0.09	34.45	193.68	193.68	142.6	-999.25	0.	5 244	5 47	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10292	-999.25	-999.25	-999.25	0.06	0.06	84.5	986.24	0.09	0.09	31.12	191.57	191.57	142.77	-999.25	0.	5 245	7 47	4 -999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10292.5	-999.25	-999.25	-999.25	0.06	0.06	52.02	952.05	0.09	0.09	28.88	188.31	188.31	142.95	-999.25	0.	5 246	7 47	2 -999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10293	-999.25	-999.25	-999.25	0.06	0.06	32.12	927.16	0.09	0.09	28.85	186.63	186.63	143.16	-999.25	0.	5 247	47	2 -999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10293.5	-999.25	-999.25	-999.25	0.06	0.06	27.58	972.77	0.09	0.09	26.99	187.16	187.16	143.84	-999.25	0.	5 247	47	2 -999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10294	-999.25	-999.25	-999.25	0.06	0.06	31.96	1047.71	0.09	0.09	21.46	188.23	188.23	144.35	-999.25	0.4	9 247	5 47	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25	-999.25
10294.5	-999.25	-999.25	-999.25	0.06	0.06	64.08	1005.84	0.09	0.09	17.79	190.26	190.26	144.8	-999.25	0.4	9 247	5 48	2 -999.25	-999.25	-999.25	-999.25	-999.25	-999.25	11.34	-999.25
10295	-999.25	-999.25	-999.25	0.06	0.06	125.01	886.83	0.09	0.09	13.62	192.59	192.59	145.28	5.66	0.4	8 247	1 48	7 2.24	-0.29	-999.25	-999.25	-999.25	2.52	11.31	8.5
10295.5	-999.25	-999.25	-999.25	0.06	0.06	241.79	848.52	0.09	0.09	10.03	194.6	194.6	145.93	32.03	0.4	8 246	5 49	0 2.23	-0.29	-999.25	-999.25	-999.25	2.52	11.32	8.5
10296	-999.25	-999.25	-999.25	0.06	0.06	480.27	976.85	0.09	0.09	5.39	200	200	146.32	51.08	0.4	8 246	5 49	1 2.23	-0.29	-999.25	-999.25	-999.25	2.52	11.25	8.5
10296.5	-999.25	-999.25	-999.25	0.06	0.06	318.86	885.12	0.09	0.09	0.39	200	200	146.71	48.06	0.4	8 246	2 49	2 2.23	-0.29	-999.25	-999.25	-999.25	2.52	11.22	8.5
10297	-999.25	-999.25	-999.25	0.06	0.06	188.62	966.88	0.09	0.09	0.45	200	200	147.06	63.25	0.4	8 246	2 49	4 2.23	-0.29	-999.25	-999.25	-999.25	2.52	11.19	8.5
10297.5	-999.25	-999.25	-999.25	0.06	0.06	110.06	1315.63	0.09	0.09	0.36	200	200	147.62	82.68	0.4	8 246	3 49	5 2.22	-0.29	-999.25	-999.25	-999.25	2.52	11.15	8.5
10298	-999.25	-999.25	-999.25	0.06	0.06	71.02	1518.89	0.09	0.09	0.32	20	00	147.99	46.49	0.4	8 246	5 49	8 2.22	-0.3	-999.25	-999.25	-999.25	2.52	11.09	8.5
10298.5	-999.25	-999.25	-999.25	0.06	0.06	46.32	1565.17	0.09	0.09	0.29	20	00	148.39	26.48	0.4	7 246	7 49	9 2.22	-0.3	-999.25	-999.25	-999.25	2.51	11.07	8.5

Depth, SGRC, SGRA, SGRB, SEXP, SESP, SEMP, SEDP, SEXC, SESC, SEMC, SEI , STEM, SDDE, SPLF, SNNA, SNFA, SBDC, SCOR, SBD2, SCO2, SNBD, SFBD, SNPE, SHSI (ft), (api), (api), (api), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (ohmm), (degF), (ptpf), (v/v), (cp30), (cp30), (g/cc), (g/cc) 1,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 10291,-999.25,-999.25,-999.25,0.06,0.06,120.34,975,0.09,0.09,36.32,194.42,194.42,142.46,-999.25,0.5,2440,475,-999.25,-9 10291.5,-999.25,-999.25,-999.25,0.06,0.06,105.39,981.11,0.09,0.09,34.45,193.68,193.68,142.6,-999.25,0.5,2445,475,-999.25,-999.25,-999 10292,-999.25,-999.25,-999.25,0.06,0.06,84.5,986.24,0.09,0.09,31.12,191.57,191.57,142.77,-999.25,0.5,2457,474,-999.25,-999.25,-999.25 10292.5,-999.25,-999.25,-999.25,0.06,0.06,52.02,952.05,0.09,0.09,28.88,188.31,188.31,142.95,-999.25,0.5,2467,472,-999.25,-999.25,-999. 10293,-999.25,-999.25,-999.25,0.06,0.06,32.12,927.16,0.09,0.09,28.85,186.63,186.63,143.16,-999.25,0.5,2470,472,-999.25,-999.25,-999.25 10293.5,-999.25,-999.25,-999.25,0.06,0.06,27.58,972.77,0.09,0.09,26.99,187.16,187.16,143.84,-999.25,0.5,2470,472,-999.25,-999.25,-999 10294,-999.25,-999.25,-999.25,0.06,0.06,31.96,1047.71,0.09,0.09,21.46,188.23,188.23,144.35,-999.25,0.49,2475,476,-999.25,-999.25,-999 10294.5,-999.25,-999.25,-999.25,0.06,0.06,64.08,1005.84,0.09,0.09,17.79,190.26,190.26,144.8,-999.25,0.49,2475,482,-999.25,-999.25,-999 10295,-999.25,-999.25,-999.25,0.06,0.06,125.01,886.83,0.09,0.09,13.62,192.59,192.59,145.28,5.66,0.48,2471,487,2.24,-0.29,-999.25,-999 10295.5,-999.25,-999.25,-999.25,0.06,0.06,241.79,848.52,0.09,0.09,10.03,194.6,194.6,145.93,32.03,0.48,2466,490,2.23,-0.29,-999.25,-999 10296,-999.25,-999.25,-999.25,0.06,0.06,480.27,976.85,0.09,0.09,5.39,200,200,146.32,51.08,0.48,2465,491,2.23,-0.29,-999.25,-999.25,-99 10296.5,-999.25,-999.25,-999.25,0.06,0.06,318.86,885.12,0.09,0.09,0.39,200,200,146.71,48.06,0.48,2462,492,2.23,-0.29,-999.25,-999.25, 10297,-999.25,-999.25,-999.25,0.06,0.06,188.62,966.88,0.09,0.09,0.45,200,200,147.06,63.25,0.48,2462,494,2.23,-0.29,-999.25,-999.25,-99 10297.5,-999.25,-999.25,-999.25,0.06,0.06,110.06,1315.63,0.09,0.09,0.36,200,200,147.62,82.68,0.48,2463,495,2.22,-0.29,-999.25,-999.25 10298,-999.25,-999.25,-999.25,0.06,0.06,71.02,1518.89,0.09,0.09,0.32,200,200,147.99,46.49,0.48,2465,498,2.22,-0.3,-999.25,-999.25,-999 10298.5,-999.25,-999.25,-999.25,0.06,0.06,46.32,1565.17,0.09,0.09,0.29,200,200,148.39,26.48,0.47,2467,499,2.22,-0.3,-999.25,-999.25,-9 10299,-999.25,-999.25,-999.25,0.06,0.06,0.06,0.85,1502.45,0.09,0.09,3.76,200,200,148.73,22.72,0.48,2460,497,2.21,-0.3,-999.25,-999.25,-999 10299.5,-999.25,-999.25,-999.25,0.06,0.06,0.06,0.96,1282.31,0.09,0.09,6.06,200,200,149.6,18.31,0.48,2461,495,2.22,-0.29,-999.25,-999.25,-99 10300,-999.25,-999.25,-999.25,0.06,0.06,1.22,1358.33,0.1,0.09,9.82,200,200,149.57,8.71,0.48,2462,495,2.22,-0.29,-999.25,-999.25,-999.2 10300.5,-999.25,-999.25,-999.25,0.06,0.07,1.64,1356.55,0.1,0.09,15.38,200,200,149.55,3.72,0.48,2468,491,2.23,-0.28,-999.25,-999.25,-99 10301,-999.25,-999.25,-999.25,0.06,0.07,2,1166.42,0.1,0.09,25.72,200,200,149.55,0.53,0.48,2473,487,2.23,-0.28,-999.25,-999.25,-999.25, 10301.5,-999.25,-999.25,-999.25,0.06,0.07,1.96,1051.09,0.11,0.09,40.57,200,200,149.53,1.97,0.48,2474,484,2.23,-0.28,-999.25,-999.25,-9 10302,-999.25,-999.25,-999.25,0.06,0.07,1.57,1018.14,0.11,0.09,42.86,200,200,149.49,2.73,0.48,2479,482,2.22,-0.28,-999.25,-999.25,-999

SGRC	SGRA	SGRB	SEXP	SESP	SEMP	SEDP
SEXC	SESC	SEMC	SEDC	SEDA	STEM	SDDE
SPLF	SNNA	SNFA	SBDC	SCOR	SBD2	SCO2
SNBD	SFBD	SNPE	SHSI			

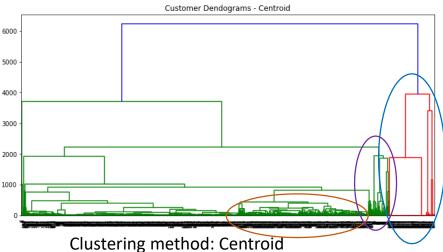
Well Curves – Clustering



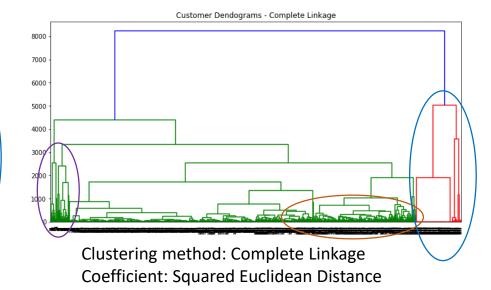


Clustering method: Average Linkage Coefficient: Squared Euclidean Distance

Cluster analysis using Spyder / Anaconda Scipy.cluster.hierarchy.dendrogram

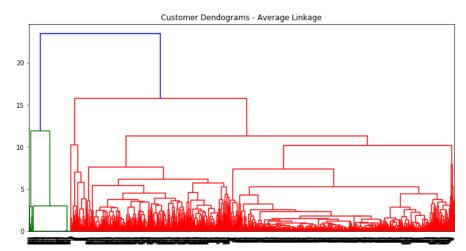


Coefficient: Squared Euclidean Distance



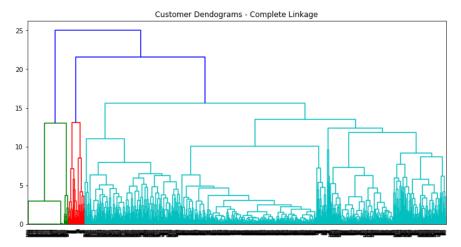
- 1. Some distinct clusters, majority of points are mixed
- 2. Review data to remove non-discriminatory data
- 3. Investigate end points. Rerun and review

Well Curves – Change of coefficient



Clustering method: Average Linkage

Coefficient: Canberra



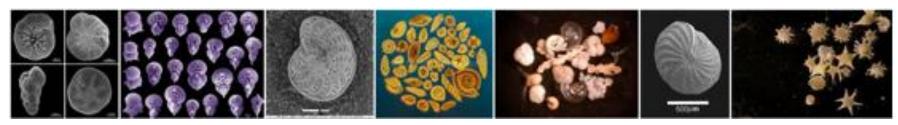
Clustering method: Complete Linkage

Coefficient: Canberra

Cluster analysis using Spyder / Anaconda Scipy.cluster.hierarchy.dendrogram

- 1. More distinct clusters, easier to differentiate
- 2. Investigate groups for significance
- 3. Review data for noise

Micropaleontology



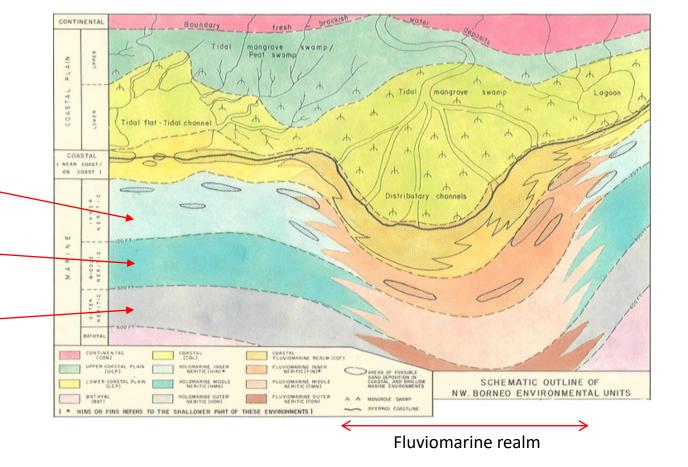
Benthonic Foraminifera – Protozoa. Live(d) on the sea bottom. Size \sim 200-2000 microns Best viewed with binocular microscope at 25x - 80x magnification

North West Borneo Environmental Scheme (Shell, 1970s)

Holomarine Inner Neritic 0 – 40m water depth

Holomarine Middle Neritic 40 – 100m water depth

Holomarine Middle Neritic 100 – 200m water depth

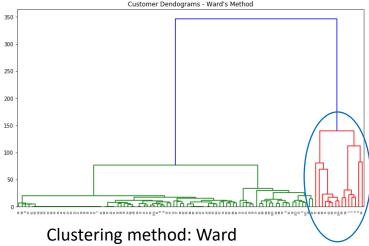


Micropaleontology – The DATA

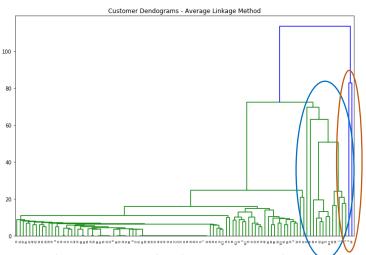
03	4933	ART	2	1.00		0													
NON1			R	'R3	1	С	'R25	1	F	'CI1		С	'TX1	1	F	'TX7	1	C	•
BOTA1	1		С	'R2	1	С	'ELPH1	1	С	'B01		C	'NON3	1	R	'END	1		
03	4943	ART	2	1.00		0													
R25			С	'ELPH1	1	C	'R2	1	С	'R3	1	A	'TX1	1	С	'TX7	1	С	1
Q5			F	'SGM1	1	F	'GSPP	1	0.0	'AM1	1	С	'SGM3	1	F	'BOTA1	1	С	1
BO1			С	'NON1	1	F	'GY1	100	F	'CI1		C	'END	1					
03	4953	ART	2	1.00		0													
TX1			С	'TX7	1	F	'Q5	1	F	'R3	1	С	'NON3	1	R	'NON1	1	F	1
GY1			R	'R25	1	F	'ELPH1	1	С	'CI1	1	С	'OPSPP	1	F	'SGM5	1	R	1
BOTA1			С	'R2	1	F	'END	1											
03	4965	ART	2	1.00		0													
OPSPP			R	'OPLA1	1	R	'ELPH2	1	F	'B01	1	F	'NON3	1	F	'R2	1	F	1
R3			F	'R25	1	F	'ELPH1	1	F	'SGM3		R	'BOTA1	1	F	'Q5	1	R	1
CII	1		F	'END	1														

The purpose: Group samples belonging to the same environment of deposition based on species content

Micropaleontology – Well foraminiferal samples

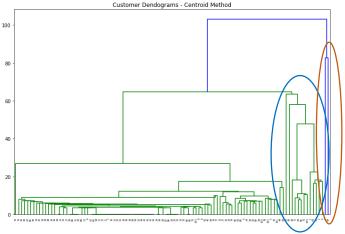


Coefficient: Squared Euclidean Distance

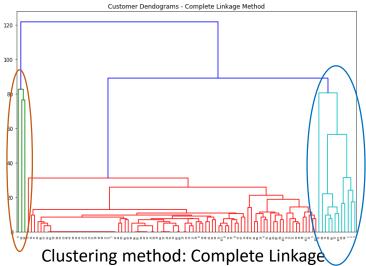


Clustering method: Average Linkage
Coefficient: Squared Euclidean Distance

Cluster analysis using Spyder / Anaconda Scipy.cluster.hierarchy.dendrogram



Clustering method: Centroid Coefficient: Squared Euclidean Distance



Coefficient: Squared Euclidean Distance

- 1. Some distinct clusters, mostly mixed
- 2. Investigate groups for significance
- 3. Review data for noise

Data Science opportunities – Paleoenvironmental reconstruction

Stratigraphy

- -Litho, bio, chrono
- -Sea level changes
- -flooding surfaces

Sedimentary facies

- -types
- -characteristics
- -bedding, dips etc
- -log shape interpretation

Seismic

- -seismic features (seismostrat)
- -traces
- -Checkshots
- -time-depth curve
- -Vertical seismic profiling (VSP)

Structural

- -faults
- -uplifts
- -eustatic
- -erosion
- -missing sections

Paleoenvironments

Well Logs

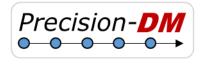
- -Gamma ray
- -Sonic
- -Density
- -Neutron
- -Resistivities
- -Caliper

Minerals

- -glauconite
- -siderite
- -pyrite
- -mica

Paleontology

- -benthics
- -planktonics
- -larger forams
- -nannofossils
- -palynology
- -ostracods
- -trace fossils



Copyright@2019 Precision-DM

Data Science opportunities—Source Rocks

Pressure

- -Spot readings
- -Trends

Temperature

- -Sample readings
- -Gradients

Surrounding wells

- -well data
- -Source rock distribution patterns
- -maps & trends

Burial History

- -Sedimentation rates
- -Sediment types
- -Missing sections
- -Palinspastic reconstruction

Well Logs

- -Gamma ray
- -Sonic
- -Density
- -Resistivities
- -Caliper

Sedimentary facies

- -types
- -characteristics
- -bedding, dips etc
- -log shape interpretation

Source Rocks

Computer simulation

- -Methods (eg Migration
- Models
- -Probabliistic vs deterministic

Rock properties

- -Porosity
- -Permeability
- -Diagenesis

Macerals

- -Organic type (Lip. vs Vit.)
- -Kitchen area
- -Migration paths
- -Maturity levels (DOM, VR/E)

Paleontology

- -benthics
- -planktonics
- -larger forams
- -nannofossils
- -palynology
- -ostracods

Data Science opportunities—Prospect appraisal

Temperature

- -Sample readings
- -Gradients

Pressure

- -Spot readings
- -Trends

Analogues

- -local comparators
- -regional
- -global

Sedimentary facies

- -Sediment types
- -Characteristics
- -Bedding, dips etc
- -Log shape interpretation

Structural

- -faults
- -closures
- -seals

Surrounding wells

- -Well data
- -Correlation
- -Maps & trends

Burial History

- -Sedimentation rates
- -Sediment types
- -Missing sections
- -Palinspastic reconstruction

Rock properties

- -Porosity
- -Permeability
- -Diagenesis

Precision-DM

- Well Logs
- -Gamma ray
- -Sonic
- -Density
- -Neutron
- -Resistivities
- -Caliper

Computer simulation

- -Methods (eg Monte
- carlo)
- -Probabliistic vs deterministic

Prospect Appraisal

Source Rocks

- -Type (lip. vs vit.)
- -Kitchen area
 - -Maturity

Paleontology

- -benthics
- -planktonics
- -larger forams
- -nannofossils
- -palynology
- -ostracods

Copyright@2019 Precision-DM

Conclusions

- Machine learning is not a black box
- Understand the ML workflow components, behaviors and limitations
- Look at the DATA
- Give importance to feature selection & feature extraction
- Look at the results
- Look at the DATA again

Questions

